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Abstract: CXL ended the fabric wars and introduced new 
challenges for optimizing the performance of these rapidly 
expanding system architectures that deploy CXL.  CXL 
provides a great framework for unifying processing, 
memory, storage, and communications, and the possibility 
of combining functions in ways previously difficult or 
impossible to achieve.  CXL is inevitably moving into other 
domains as well, such as artificial intelligence, automotive 
applications, and even notebook-class computing. 
 
NVMe Over CXL merges storage and memory in ways that 
optimize traffic on the fabric, and also adds significant 
performance gains over standalone solutions deployed in 
traditional systems. 
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Introduction 
 
The industry is in the process of adopting Compute Express Link, or CXL™, as the 
primary fabric for interconnecting a variety of processors, I/O resources, memory 
resources, and storage for data centers, hyperscalers, and similar computing 
clusters.  Artificial intelligence is similarly soaring in popularity, and demanding 
massive data sets for the learning processes.  It is likely to move into the next 
generation of automobiles as well as cars adopt data center technology.  CXL allows 
mixing resources in a fashion that meets the needs of these systems, and flexibility 
for each end user to deploy a different mix. 
 
CXL adds a family of light-weight protocols running on industry standard PCIe buses: 
CXL.io which encapsulates traditional PCIe protocols, CXL.cache which allows 
coherent memory resource sharing, and CXL.mem which adds a simpler memory-
direct interface.  Solid State Drives (SSDs) are the dominant non-volatile storage 
devices, and the Non-Volatile Memory Express (NVMe) protocol running on PCIe is 
the dominant software interface.  Newly emerging are CXL Memory Modules (CMMs) 
which provide a bridge between the CXL.mem protocol and standard volatile memory 
such as DDR SDRAM. 
 
NVMe Over CXL™ (NVMe-oC™) combines storage and memory into a unified CXL 
device that leverages both CXL.io and CXL.mem without breaking the massive 
volume of legacy software that runs on today’s systems.  NVMe-oC reduces traffic on 
system buses, improves performance, and provides the ability to make volatile 
memory persistent.  NVMe-oC provides a “memory class storage”, so to speak. 
 
CXL Allows Flexible Mix-and-Match Design 
 
In today’s system architectures, storage and memory are distinct.  This is an artifact 
of the early (nearly pre-historic) adoption of random access memory (RAM) as the 
medium for holding programs and data, and filesystems for paging data between 
RAM and non-volatile backup media.  As shown in Figure 1, typical systems currently 
use DDR as the interface to memory and PCIe as the interface to storage.  Programs 
execute from RAM on data also stored in RAM.  Storage is essentially a paging 
operation to move programs and data from non-volatile media into the RAM. 
 
RAM accesses have fine granularity that match processor caches with 64 bytes per 
cache line, and for this reason CXL primarily uses a 64-byte flow control unit (FLIT) 
as its transaction payload.  Storage accesses, on the other hand, operate on large 
data blocks, typically 4 KB or larger. 
 
Volatility versus non-volatility (or data persistence) is an essential aspect of this 
architecture as well.  By definition, storage is non-volatile, meaning that if power 
fails, the media contents will not be lost.  In contrast, RAM is volatile and its contents 
lost on power fail unless special mechanisms are deployed to maintain the contents 
of memory until power is restored.  NVMe Over CXL will also address the issue of 
volatility. 
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Figure 1: Typical Connectivity of CPU with RAM and Storage 

CXL features a low pin count method for expanding system resources.  Processing, 
storage, memory, and communications may be incrementally added with a unifying 
fabric allowing data flow between these resources.  The picture in Figure 2 shows a 
small-scale simplified architecture; hyperscaler systems may deploy thousands of 
each class of node to create massively parallel processing environments. 
 

 
Figure 2: CXL-Based Server Architecture 

The mix-and-match flexibility of CXL-based systems is a boon for system architects, 
but also has unique challenges.  Coordinating large numbers of resources requires 
sophisticated mapping and control, and timing can become challenging as well.  
Among those challenges is the allocation of a storage connection and memory 
resource as a combined unit.  As these are distinct operations, coordinating these 
resources takes time and potentially incurs race conditions in a fabric where multiple 
controllers may be vying for the shared resource. 
 
NVMe and Controller Memory Buffers 
 
NVMe specification 1.2 introduced the concept of a Controller Memory Buffer (CMB1).  
The CMB allowed the host controller to specify exact memory addresses for the source 
and target RAM buffers in NVMe read and write operations.  The memory for storing 
data buffer or command queues can be resident in memory directly attached to the 

 
1 Since, as you know, engineers can only think in acronyms. 
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CPU (e.g., DDR) or may be located in the NVMe SSD (e.g., CMB) as illustrated in 
Figure 3. 
 
Before initiating any block access operation, the host must allocate the CMB resource 
to validate and establish ownership of the required part of the storage system 
resources using PCIe transaction layer packet, also known as TLP. Once resource 
ownership is established, a host CPU may initiate a storage read operation using PCIe 
TLP to the storage device. 
 
Traditionally, transferring a block of data from one SSD to another SSD involves using 
host DRAM as a staging buffer. With CMB, local memory can serve as a device buffer. 
As depicted in Figure 3, the SSD device decodes the logical to physical address of the 
read request to the attached Flash memory device and reads the corresponding Flash 
pages. 
 
Since the target SSD equips with CMB, the Flash content can be read directly into the 
device buffer in a CMB using point-to-point (P2P) direct memory accesses (DMAs), 
which bypass the host DDR memory and reduce latency. Once the data is located in 
the CMB, either the host CPU can access the contents using PCIe memory read/write 
transactions or the device can process the data locally. 
 
Write operations are the reverse of read operations.  The CPU modifies the data 
stored in a CMB, then issues an NVMe write command, specifying the CMB memory 
address as part of the write operation. The SSD controller then uses P2P DMA to fetch 
the data stored in the CMB then transmits the content in the device buffer to the 
associated Flash locations. 
 
A couple of observations are obvious here. Although the CPU can directly execute 
load/store instructions to access CMB content, the resulting PCIe memory 
transactions bypass the cache hierarchy, making the overall performance inefficient 
– these constraints limit the applications. As a result, practical examples only consider 
a CMB as a DMA buffer to facilitate block transfers between PCIe devices.  A CMB 
cannot be efficiently utilized by the host CPU. This limitation, combined with the 
advent of CXL, motivates the proposal of a new architecture to address these 
problems. 
 
Basically, CXL allows us to do CMB the right way! 
 
 
NVMe Over CXL 
 
NVMe Over CXL (NVMe-oC) combines the PCIe/CXL.io addressable NVMe logic with a 
CXL memory controller on the same device.  As shown in Figure 4, this allows 
transfers between the Flash memory and the RAM to operate at the full speed of the 
attached Flash and RAM media devices.  These DMA transfers can operate without 
consuming any time slots on the CXL fabric, which also avoids incremental protocol 
translation overhead in the transfers. 
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As with separate storage and memory modules, validation and ownership of the 
resources must be established prior to accessing either media, however with NVMe-
oC this is performed using a single step, eliminating the potential race conditions of 
distinct operations.  Once the resources are allocated, including the CMB which is 
located in the RAM address space on the NVMe-oC module, host operation may begin. 
 
The procedure for read operations for NVMe-oC is compatible with legacy 
implementations that use CMBs.  The host uses CXL.io to issue the NVMe commands 
to the NVMe-oC module.  The logical to physical address translation is performed to 
access the associated Flash pages in the attached Flash memory device.  Instead of 
copying to a local cache then moving data to host DRAM by DMA, however, the NVMe-
oC controller also incorporates a RAM controller and may copy the contents of Flash 
directly into RAM at the assigned CMB address. 
 

 
Figure 3: NVMe-oC Block Diagram 

Once the contents of the Flash have been DMA transferred into the NVMe-oC RAM, 
the host may directly access the CMB using the CXL.mem protocol.  Read and write 
operations access the RAM buffer which appear in the CPU address space.  Each read 
or write operation between the host and the RAM is one FLIT or 64 bytes.  Long FLITs 
with 256 bytes are also supported and treated as four short FLITs which may be 
striped across multiple RAM channels. 
 
When the host CPU is ready to write the CMB contents back to the Flash, the reverse 
operation is performed.  The NVMe write commands are issued to the NVMe-oC 
controller using CXL.io specifying the CMB address located on the NVMe-oC module.  
The NVMe-oC controller initiates DMAs from the RAM to the associated Flash 
locations. 
 
NVMe Over CXL Advantages 
 
While it is easy to visualize the NVMe-oC architecture, it is less clear… why?  What 
does NVMe Over CXL improve over separate NVMe and CXL memory modules?  The 
answer lies in the distinction between NVMe blocks and the number of bytes actually 
used out of these blocks to assess the efficiency of NVMe. 
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Example 1: Three RocksDB (KVS) use cases at Facebook2 which deploy: 
• UDB, a MySQL storage layer for social data graphs 
• ZippyDB, a distributed key-value store 
• UP2X, a distributed key-value store for artificial intelligence and machine 

learning services 
 
As shown in Figure 5, the dominant operation is GET which performs a large number 
of key-value accesses to unsorted small pairs in different storage blocks. 
 

 
Figure 4: Operations Executed Using UDB, ZippyDB, UP2X 

The resulting memory accesses to the CMBs are shown in Figure 6, which clearly 
highlights that one to two FLITs satisfy most requests.  128/4096 = 0.03… in other 
words, 97% of the transferred data is never used. 
 

Figure 5: Access Sizes for UDB, ZippyDB, UP2X 
Case Average Key Size (bytes) Average Value Size (bytes) 
UDB 27.1 126.7 

ZippyDB 47.9 42.9 
UP2X 10.45 46.8 

 
Example 2: Twemcache use cases3 at X (the artist formerly known at Twitter) shown 
in Figure 7, where the median object size is slightly over 100 bytes, also less than 
two FLITs. 
 

 
2 Cao, Zhichao, et al. "Characterizing, Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook" 
18th USENIX Conference on File and Storage Technologies (FAST 20). 2020. 
3 Yang, Juncheng, Yao Yue, and K. V. Rashmi. "A Large-scale Analysis of Hundreds of In-memory Key-value Cache 
Clusters at Twitter" ACM Transactions on Storage (TOS) 17.3 (2021): 1-35. 
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Figure 6: Twemcache, 153 Clusters 

Example 3: fsync()4 forces modified data in the open file’s CMBs to be written to 
permanent storage, and executes a large number of small random read-modify-write 
operations.  Accessed are blocked until data flush is complete.  Figure 8 shows the 
significant impact of fsync() on system performance, primarily caused by the large 
number of blocks transferred while very little data is used in each block. 
 

 
Figure 7: Performance Drop for MySQL on Aggressive fsync() 

 
Data Flow with NVMe Over CXL 
 
In general, the performance advantages of NVMe Over CXL compared to using 
individual NVMe storage modules are seen by comparing Figure 9 and Figure 10.  In 
the first case, all traffic must engage the transfer of packets across the PCIe interface.  
Beyond the data itself, every command and response require that packets are 
exchanged across the PCIe, increasing traffic and adding to the latency of actual 
work.  
 
Typically, traditional NVMe over PCIe demands a substantial effort to complete 
reading a block of data from an SSD, as illustrated Figure 9. In the initial step, the 
software driver prepares an IO block-read command in the submission queue and 

 
4 He, Haochen, et al. "When Database Meets New Storage Devices: Understanding and Exposing Performance 
Mismatches via Configurations." Proceedings of the VLDB Endowment 16.7 (2023): 1712-1725. 
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informs the device using the doorbell mechanism. Subsequently, the SSD device 
begins fetching commands from the host and processes them by reading block data 
from Flash. Once the block data is ready on the device, it must write back the block 
data to the host DRAM using multiple TLP memory write (MWr). After the data 
movement is complete, the device prepares the necessary entry for the completion 
queue and notifies the host after inserting the entry into the completion queue. 
Examining this complex flow makes it evident that reading a block of data involves 
numerous PCIe transactions between the host and the device. With more blocks being 
accessed simultaneously, this traffic will further exaggerate. 
 

 
Figure 8: Traffic Jam Using Separate NVMe and CXL Memory Module 

With NVMe Over CXL, the traffic is significantly reduced.  Once the command has 
been issued to the NVMe-oC controller, the processing of the command can be done 
with minimal traffic on the PCIe. A significant difference lies in the allocation of the 
data buffer on the device memory, eliminating the need for block transfer between 
the host and the device. As the application can utilize CXL.mem to access any byte 
within those block data on device memory, there is no necessity to move those blocks 
to the host. 
 
Further examining the flow of adopting the NVMe-oC architecture, the device memory 
allows the host to store the submission queue in the controller side. This configuration 
reduces the latency of command fetching, as each command is directly inserted into 
the device, and the device can decode the command locally. 
 
Data transfer from Flash to RAM occurs in blocks, e.g., 4 KB, however this is 
accomplished at the internal data rates of the Flash and RAM interfaces. When the 
host needs to consume the data that has been read, it accesses the data 64 bytes at 
a time using CXL.mem FLITs. Importantly, this scheme introduces no modification to 
the NVMe flow, and the reduced traffic contributes to minimizing queueing delays for 
each PCIe transaction, thereby improving per-command Quality of Service (QoS). 
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Figure 9: Traffic Relief Using NVMe Over CXL 

Critical Word Access Feature 
 
Critical word access has been a feature of cache fill operations for a long time.  The 
idea is to transfer the data most likely to be accessed first and allow it to be processed 
while the rest of the cache is still being filled.  NVMe-oC supports critical word access 
by tracking the status of the DMA from Flash to RAM and comparing this to incoming 
data access requests from the CXL.mem interface.  If the memory address requested 
by the CXL.mem access has been successfully transferred, the access is allowed to 
complete even while the DMA from Flash continues for other bytes in the block.  If 
the requested CXL.mem address has not been DMA transferred yet, the CXL.mem 
request is held off until that data is valid in RAM, and then the transfer completes. 
 

 
Figure 10: NVMe-OC Critical Word Access 

Data Persistence Feature 
 
The lack of data persistence is the key weakness of RAM.  When power fails, the data 
stored in RAM is lost.  NVMe-oC controllers are capable of providing persistence 
support to RAM contents, however.  An external sideband signal, Power Failing, 
provides a warning from the host system if power failure is imminent. When Power 
Failing is asserted, the NVMe-oC controller completes any FLIT in progress then 
disables the PCIe interface. The entire content of RAM is written into the Flash media. 
When power is restored, the NVMe-oC controller transfers the stored image from 
Flash back to RAM before signaling to the host that it is ready for operation. 
Depending on the Power Failing latency to actual power down and the time required 
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to save RAM to Flash, the module may require an energy source to power the NVMe-
oC logic until the operation completes. 
 
 

 
Figure 11: RAM Data Persistence Function 

Software support for data persistence leverages the Byte Addressable Energy Backed 
Interface procedures to coordinate host and device validation of the RAM image.5 
 
The data persistence feature makes NVMe Over CXL attractive for automotive 
applications. Current automobile designs deploy many system-on-a-chip (SoC) 
subsystems, however the weak link is that each SoC has a slow serial boot ROM chip 
to reload code.  If power glitches while the car is running, say from a lightning strike 
impulse, the reboot time of the vehicle can be measured in seconds. Automotive 
fabrics already connect these SoCs to a shared SSD resource over PCIe. Adding CXL 
logic onto this PCIe interface, and automatically reloading critical SoC boot code from 
Flash into in a shared RAM space, can give these vehicles nearly instant-on capability. 
NVMe-oC can literally save lives. 
 
NVMe Over CXL Also Supports Legacy Use Modes 
 
This white paper focuses on the unique features enabled by co-locating Flash and 
RAM on the same module; however, these subsystems are entirely backward 
compatible separately as well.  For example, the CMB for the NVMe functions need 
not be located in the NVMe-oC RAM, but may be anywhere in the processor 
addressing space including direct attached DRAM or CXL memory modules.  Similarly, 
while the RAM located on the NVMe-oC module may be allocated for use as CMBs, it 
is just RAM what can be accessed and used like any other CXL memory module. 
 
NVMe Over CXL Compared to Memory Semantic SSD 
 
Memory semantic solid-state drives (MS-SSDs) are a different way to merge Flash 
and RAM. While, from a high-level view, MS-SSDs look similar to NVMe Over CXL, 
they are actually quite different.  MS-SSD provides RAM accessible over CXL.mem, 

 
5 Byte Addressable Energy Backed Interface (BAEBI): https://www.jedec.org/system/files/docs/JESD245E.pdf 

https://www.jedec.org/system/files/docs/JESD245E.pdf
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however the memory footprint of the MS-SSD is expanded by the addition of Flash 
on the module. MS-SSDs use target-directed cache strategies to page contents 
between RAM and Flash: if a CXL.mem requests comes in and the content is in RAM, 
the request is honored at CXL.mem speeds. However, if the content is not in RAM, 
the CXL.mem request is held off while the MS-SSD controller writes the contents of 
some RAM block out to the Flash, remaps that memory block for the CXL.mem 
request, and loads the RAM contents of that requested memory block from Flash into 
RAM before completing the request. 
 
This highlights the primary difference between NVMe-OC and MS-SSD. The MS-SSD 
CXL.mem requests can be delayed at any time if the on-module cache algorithm 
causes a page miss.  Since applications running and using this memory are not aware 
of these delays, they either freeze in the active application queue until the swap is 
complete or they lose their slot and are put back onto the pending process list. 
 
NVMe-oC distinguishes between the filesystem access and memory access methods 
cleanly, so running applications do not hang waiting for resources.  Even when critical 
word access mode is used, the delay is only until DMA of the requested word 
completes, not like the much longer MS-SSD cache flush and cache fill operation 
completes. 
 
In short, MS-SSD cache strategies are limited to the algorithms on the MS-SSD 
module, whereas NVMe-oC cache strategies are host-driven and trust the host to 
perform optimizations best for their applications. 
 
This distinction also highlights another fundamental difference between these 
approaches.  NVMe-oC works with all existing applications that use filesystem access 
mechanisms.  MS-SSD typically requires software changes to utilize direct memory 
access, such as memory-mapped files. 
 
Conclusion 
 
Storage and memory have traditionally been distinct and separated in computer 
architectures. However, with the advent of CXL as a unifying fabric, new possibilities 
have emerged in how these essential parts are treated within future data processing 
systems. NVMe Over CXL combines the best of storage and direct memory access 
methods into a holistic solution that allows existing software to use these resources 
without change. NVMe-oC not only provides higher performance but also reduces the 
system traffic over its fabric. Moreover, the inclusion of data persistence for memory 
enabled by CXL paves the way for a future where instant-on features, commonly 
found in appliances, can now be extended to data centers and other computing 
equipment. 
 
NVMe Over CXL is simple in concept yet powerful in results. 


